Numerical and Thermal Investigation of Magneto-Hydrodynamic Hybrid Nanoparticles (SWCNT-Ag) under Rosseland Radiation: A Prescribed Wall Temperature Case

Author:

Hassan AliORCID,Hussain Azad,Arshad MubasharORCID,Alanazi Meznah M.,Zahran Heba Y.ORCID

Abstract

Thermal heat generation and enhancement have been examined extensively over the past two decades, and nanofluid technology has been explored to address this issue. In the present study, we discuss the thermal heat coefficient under the influence of a rotating magneto-hydrodynamic hybrid nanofluid over an axially spinning cone for a prescribed wall temperature (PWT) case. The governing equations of the formulated problem are derived by utilizing the Rivlin–Ericksen tensor and boundary layer approximation (BLA). We introduce our suppositions to transform the highly non-linear partial differential equations into ordinary differential equations. The numerical outcomes of the problem are drafted in MATLAB with the of help the boundary value problem algorithm. The influences of several study parameters are obtained to demonstrate and analyze the magneto-hydrodynamic flow characteristics. The heat and mass transfer coefficients increase and high Nusselt and Sherwood numbers are obtained with reduced skin coefficients for the analyzed composite nanoparticles. The analyzed hybrid nanofluid (SWCNT-Ag–kerosene oil) produces reduced drag and lift coefficients and high thermal heat rates when compared with a recent study for SWCNT-MWCNT–kerosene oil hybrid nanofluid. Maximum Nusselt (Nu) and Sherwood (Sh) numbers are observed under a high rotational flow ratio and pressure gradient. Based on the results of this study, we recommend more frequent use of the examined hybrid nanofluid.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3