Improved Performance of NbOx Resistive Switching Memory by In-Situ N Doping

Author:

Xu Jing,Zhu Yuanyuan,Liu Yong,Wang Hongjun,Zou Zhaorui,Ma Hongyu,Wu Xianke,Xiong RuiORCID

Abstract

Valence change memory (VCM) attracts numerous attention in memory applications, due to its high stability and low energy consumption. However, owing to the low on/off ratio of VCM, increasing the difficulty of information identification hinders the development of memory applications. We prepared N-doped NbOx:N films (thickness = approximately 15 nm) by pulsed laser deposition at 200 °C. N-doping significantly improved the on/off ratio, retention time, and stability of the Pt/NbOx:N/Pt devices, thus improving the stability of data storage. The Pt/NbOx:N/Pt devices also achieved lower and centralized switching voltage distribution. The improved performance was mainly attributed to the formation of oxygen vacancy (VO) + 2N clusters, which greatly reduced the ionic conductivity and total energy of the system, thus increasing the on/off ratio and stability. Moreover, because of the presence of Vo + 2N clusters, the conductive filaments grew in more localized directions, which led to a concentrated distribution of SET and RESET voltages. Thus, in situ N-doping is a novel and effective approach to optimize device performances for better information storage and logic circuit applications.

Funder

Yong Liu

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3