Abstract
The Himalayas have become synonymous with the hydropower developments for larger electricity demands of India’s energy sector. In the Himachal Himalayas though, there are only three large storage dams with more than 1000 megawatts (hereafter MW) capacity that have very serious environmental issues. However, hundreds of small runoff-river hydropower plants across the Himachal Himalayas are a serious threat to the river regimes and Himalayan biota. There are 965 identified hydropower projects (hereafter HPPs) having a potential capacity of 27,436 MW in the Himachal Pradesh as of December 2019 as per the Directorate of Energy of the state. Out of the 965 identified, 216 are commissioned, including less than 5 MW plants, with an installed capacity of 10,596 MW, and were operational by December 2019. Only 58 projects are under construction among the identified with an installed capacity of 2351 MW, 640 projects are in various stages of clearance and investigation with an installed capacity 9260 MW, 30 projects are to be allotted with 1304 MW installed capacity, and merely four projects are disputed/cancelled with installed capacity of 50.50 MW. The large number of HPPs are sanctioned without proper consideration of negative environmental and geohazard impacts on the Himalayan terrestrial biota. In this work, our focus was on the hydropower and climate change impact on the Himalayan river regimes of the Chenab, the Ravi, the Beas, the Satluj, and the Yamuna river basins. We analyzed basin-wise rainfall, temperature, and soil moisture data from 1955 to 2019 to see the trend by applying the Mann–Kendall test, the linear regression model, and Sen’s slope test. A basin-wise hazard zonation map has been drawn to assess the disaster vulnerability, and 12 hydropower sites have been covered through the primary survey for first-hand information of local perceptions and responses owing to hydropower plants.
Funder
Japan Society for the Promotion of Science
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献