Increased Aromatics Formation by the Use of High-Density Polyethylene on the Catalytic Pyrolysis of Mandarin Peel over HY and HZSM-5

Author:

Park Young-Kwon,Siddiqui Muhammad,Kang Yejin,Watanabe Atsushi,Lee Hyung,Jeong Sang,Kim Seungdo,Kim Young-Min

Abstract

High-density polyethylene (HDPE) was co-fed into the catalytic pyrolysis (CP) of mandarin peel (MP) over different microporous catalysts, HY and HZSM-5, with different pore and acid properties. Although the non-catalytic decomposition temperature of MP was not changed during catalytic thermogravimetric analysis over both catalysts, that of HDPE was reduced from 465 °C to 379 °C over HY and to 393 °C over HZSM-5 because of their catalytic effects. When HDPE was co-pyrolyzed with MP over the catalysts, the catalytic decomposition temperatures of HDPE were increased to 402 °C over HY and 408 °C over HZSM-5. The pyrolyzer-gas chromatography/mass spectrometry results showed that the main pyrolyzates of MP and HDPE, which comprised a large amount of oxygenates and aliphatic hydrocarbons with a wide carbon range, were converted efficiently to aromatics using HY and HZSM-5. Although HY can provide easier diffusion of the reactants to the catalyst pore and a larger amount of acid sites than HZSM-5, the CP of MP, HDPE, and their mixture over HZSM-5 revealed higher efficiency on aromatics formation than those over HY due to the strong acidity and more appropriate shape selectivity of HZSM-5. The production of aromatics from the catalytic co-pyrolysis of MP and HDPE was larger than the theoretical amounts, suggesting the synergistic effect of HDPE co-feeding for the increased formation of aromatics during the CP of MP.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3