Abstract
In this paper we study the buoyancy driven flow of a particulate suspension between two inclined walls. The suspension is modeled as a non-linear fluid, where the (shear) viscosity depends on the concentration (volume fraction of particles) and the shear rate. The motion of the particles is determined by a convection-diffusion equation. The equations are made dimensionless and the boundary value problem is solved numerically. A parametric study is performed, and velocity, concentration and temperature profiles are obtained for various values of the dimensionless numbers. The numerical results indicate that due to the non-uniform shear rate, the particles tend to concentrate near the centerline; however, for a small Lewis number (Le) related to the size of the particles, a uniform concentration distribution can be achieved.
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献