Abstract
This paper presents numerical modelling to investigate the bearing capacities and failure mechanisms of single pile-friction wheel composite foundation in sand-overlying-clay soil conditions under combined V-H-M (vertical-horizontal-moment) loadings. A series of detailed numerical models, with validations of centrifuge testing results, are generated to explore the potential factors influencing the bearing capacity of this composite system. Intensive parametric study is then performed to quantify the influences of the foundation geometry, soil properties, sand layer thickness, pre-vertical loading and lateral loading height on the failure envelopes in the V-H-M domain. Last but not least, an empirical design procedure is proposed based on a parametric study to predict the bearing capacity of this composite foundation under various loading conditions, which can provide guidance for its design and application.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献