Abstract
Offshore wind power is becoming attractive in the wind-power field. With the rapid development of wind-power technology, high-power wind turbines have been implemented in practice. However, the increase in the length of the wind turbine blade causes the pile foundation to withstand a prone overturning moment. For overcoming the problems of traditional sensing technology and meeting the monitoring requirements of pile foundations, a 20 cm spatial resolution differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA) technique is used to measure a 69 m long offshore wind turbine pile under horizontal loading. From the distributed strain data collected in the test, the maximum stress location of the long pile under the horizontal load can be obtained. By analyzing the load and maximum strain (F-εmax) curve, the horizontal bearing capacity of the pile foundation can exceed 900 kN, which is the maximum horizontal load of the design. The distributed displacement calculation method based on distributed strain data is proposed, according to the force characteristics of steel pipe piles. By comparing the calculated displacement data with the measured data by the dial indicators, the mean absolute percentage error (MAPE) value is only 0.03548. Results show that the 20 cm spatial resolution DPP-BOTDA technology is very suitable for the bearing capacity test of offshore wind turbine steel pipe pile foundations.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献