Abstract
The depressurization method is known as the most productive and effective method for successful methane recovery from hydrate deposits. However, this method can cause considerable subsidence because of the increased effective stress. Maintenance of geomechanical stability is necessary for sustainable production of gas from gas hydrate deposits. In this study, the cyclic depressurization method, which uses changing the bottomhole pressure and production time during primary and secondary depressurization stage, was utilized in order to increase stability in the Ulleung Basin of the Korea East Sea. Various case studies were conducted with alternating bottomhole pressure and production time of the primary and secondary depressurization stages over 400 days. Geomechanical stability was significantly enhanced, while cumulative gas production was relatively less reduced or nearly maintained. Specially, the cumulative gas production of the 6 MPa case was more than three times higher than that of the 9 MPa case, while vertical displacement was similar between them. Therefore, it was found that the cyclic depressurization method should be applied for the sake of geomechanical stability.
Funder
Korea Institute of Geosciences and Mineral Resources
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献