Transient Numerical Model on the Design Optimization of the Adiabatic Section Length for the Pulsating Heat Pipe

Author:

Bao Kangli,Zhuang Yuan,Gao Xu,Xu Yuanyuan,Wu Xilei,Han Xiaohong

Abstract

In the application of pulsating heat pipes (PHPs), the lengths of the adiabatic sections are usually determined by the distance between the heat source and the heat sink, and have important effects on the performance of PHPs. However, there was little research on the effect of the adiabatic section lengths on the performance of PHPs. In this work, a new transient numerical model was proposed to investigate the transient flow and the heat transfer for PHPs with various adiabatic section lengths of 60, 120, 180, and 240 mm. Based on the numerical results, the flow and the heat transfer characteristics of the PHPs were analyzed. It was found that the flow velocities in the PHP with different adiabatic lengths increased with the increase in the heat input, and the mean velocity was calculated to be in the range of 0.139–0.428 m/s, which was consistent with the previous experimental results. The start-up performance of the PHP was better with shorter adiabatic section length. Furthermore, the thermal resistances of the PHPs with different adiabatic section lengths were calculated to analyze the effects of the adiabatic section length on the performance of the PHP. The results showed that when the heat input was 20 W, the PHP with the adiabatic section of 60 mm showed the lowest thermal resistance, whereas the PHP with longer adiabatic section length presented lower thermal resistance at high heat input (≥25 W).

Funder

State Key Laboratory of Technologies in Space Cryogenic Propellants

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3