Application of Artificial Neural Networks in Construction Management: Current Status and Future Directions

Author:

Liu Shicheng,Chang Ruidong,Zuo Jian,Webber Ronald J.,Xiong FengORCID,Dong Na

Abstract

Artificial neural networks (ANN) exhibit excellent performance in complex problems and have been increasingly applied in the research field of construction management (CM) over the last few decades. However, few papers draw up a systematic review to evaluate the state-of-the-art research on ANN in CM. In this paper, content analysis is performed to comprehensively analyze 112 related bibliographic records retrieved from seven selected top journals published between 2000 and 2020. The results indicate that the applications of ANN of interest in CM research have been significantly increasing since 2015. Back-propagation was the most widely used algorithm in training ANN. Integrated ANN with fuzzy logic/genetic algorithm was the most commonly employed way of addressing the CM problem. In addition, 11 application fields and 31 research topics were identified, with the primary research interests focusing on cost, performance, and safety. Lastly, challenges and future directions for ANN in CM were put forward from four main areas of input data, modeling, application fields, and emerging technologies. This paper provides a comprehensive understanding of the application of ANN in CM research and useful reference for the future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference95 articles.

1. A framework for data-driven informatization of the construction company

2. KPMG Report: Construction Industry Slow to Adopt New Technology Constructiondive.com

3. Digital Globalization: The New Era of Global Flows;Manyika,2016

4. Automatic Indoor Construction Process Monitoring for Tiles Based on BIM and Computer Vision

5. Machine learning in construction: From shallow to deep learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3