Converting Biomedical Text Annotated Resources into FAIR Research Objects with an Open Science Platform

Author:

Kanterakis AlexandrosORCID,Kanakaris NikosORCID,Koutoulakis Manos,Pitianou Konstantina,Karacapilidis NikosORCID,Koumakis LefterisORCID,Potamias GeorgeORCID

Abstract

Today, there are excellent resources for the semantic annotation of biomedical text. These resources span from ontologies, tools for NLP, annotators, and web services. Most of these are available either in the form of open source components (i.e., MetaMap) or as web services that offer free access (i.e., Whatizit). In order to use these resources in automatic text annotation pipelines, researchers face significant technical challenges. For open-source tools, the challenges include the setting up of the computational environment, the resolution of dependencies, as well as the compilation and installation of the software. For web services, the challenge is implementing clients to undertake communication with the respective web APIs. Even resources that are available as Docker containers (i.e., NCBO annotator) require significant technical skills for installation and setup. This work deals with the task of creating ready-to-install and run Research Objects (ROs) for a large collection of components in biomedical text analysis. These components include (a) tools such as cTAKES, NOBLE Coder, MetaMap, NCBO annotator, BeCAS, and Neji; (b) ontologies from BioPortal, NCBI BioSystems, and Open Biomedical Ontologies; and (c) text corpora such as BC4GO, Mantra Gold Standard Corpus, and the COVID-19 Open Research Dataset. We make these resources available in OpenBio.eu, an open-science RO repository and workflow management system. All ROs can be searched, shared, edited, downloaded, commented on, and rated. We also demonstrate how one can easily connect these ROs to form a large variety of text annotation pipelines.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3