Evaluation of Costs and Efficiencies of Urban Low Impact Development (LID) Practices on Stormwater Runoff and Soil Erosion in an Urban Watershed Using the Water Erosion Prediction Project (WEPP) Model

Author:

Guo TianORCID,Srivastava Anurag,Flanagan Dennis C.,Liu Yaoze,Engel Bernard A.,McIntosh Madeline M.

Abstract

Storm events and soil erosion can adversely impact flood control, soil conservation, water quality, the recreation economy, and ecosystem biodiversity in urban systems. Urban Low Impact Development practices (LIDs) can manage stormwater runoff, control soil losses, and improve water quality. The Water Erosion Prediction Project (WEPP) model has been widely applied to assess the responses of hydrology and soil losses to conservation practices in agricultural and forested areas. This research study is the first to calibrate the WEPP model to simulate streamflow discharge in the Brentwood watershed in Austin, Texas and apply the calibrated WEPP model to assess the impacts of LIDs. The costs and impacts of various LID scenarios on annual water balance, and monthly average, and daily runoff volumes, and sediment losses at hillslopes and at the watershed outlet were quantified and compared. The LID scenarios identified that native planting in Critically Eroding Areas (CEAs), native planting in all suitable areas, native planting in CEAs with detention ponds, and native planting in all suitable areas with detention ponds could reduce the predicted average annual stormwater runoff by 20–24% and sediment losses by 86–94% at the watershed outlet, and reduce the average annual soil loss rates on hillslope profiles in sub-watersheds by 86–87% with the lowest costs (USD 2991/yr–USD 5257/yr). Watershed/field characteristics, locations, areas, costs, and the effectiveness of the LID practices were essential in choosing the LID scenarios. These research results can help guide decision-making on the selection and implementation of the most economical and suitable LID practices to strengthen the climate resilience and environmental sustainability of urban systems.

Funder

Natural Resources Conservation Service

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3