Modeling Spatio-Temporal Dynamics of BMPs Adoption for Stormwater Management in Urban Areas

Author:

Zhang Zeshu1ORCID,Montas Hubert1,Shirmohammadi Adel2,Leisnham Paul T.2ORCID,Rockler Amanda K.3

Affiliation:

1. Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA

2. Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA

3. Sea Grant Extension Programs, University of Maryland Extension Service, University of Maryland, College Park, MD 20742, USA

Abstract

Nonpoint source (NPS) pollution is a severe problem in the U.S. and worldwide. Best management practices (BMPs) have been widely used to control stormwater and reduce NPS pollution. Previous research has shown that socio-economic factors affect households’ adoption of BMPs, but few studies have quantitatively analyzed the spatio-temporal dynamics of household BMP adoption under different socio-economic conditions. In this paper, diverse regression approaches (linear, LASSO, support vector, random forest) were used on the ten-year data of household BMP adoption in socio-economically diverse areas of Washington, D.C., to model BMP adoption behaviors. The model with the best performance (random forest regression, R2 = 0.67, PBIAS = 7.2) was used to simulate spatio-temporal patterns of household BMP adoption in two nearby watersheds (Watts Branch watershed between Washington, D.C., and Maryland; Watershed 263 in Baltimore), each of which are characterized by different socio-economic (population density, median household income, renter rate, average area per household, etc.) and physical attributes (total area, percentage of canopy in residential area, average distance to nearest BMPs, etc.). The BMP adoption rate was considerably higher at the Watts Branch watershed (14 BMPs per 1000 housing units) than at Watershed 263 (4 BMPs per 1000 housing units) due to distinct differences in the watershed characteristics (lower renter rate and poverty rate; higher median household income, education level, and canopy rate in residential areas). This research shows that adoption behavior tends to cluster in urban areas across socio-economic boundaries and that targeted, community-specific social interventions are needed to reach the NPS control goal.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3