Homocysteine Solution-Induced Response in Aerosol Jet Printed OECTs by Means of Gold and Platinum Gate Electrodes

Author:

D’Angelo PasqualeORCID,Barra MarioORCID,Lombari Patrizia,Coppola Annapaola,Vurro Davide,Tarabella Giuseppe,Marasso Simone Luigi,Borriello Margherita,Chianese Federico,Perna Alessandra F.ORCID,Cassinese Antonio,Ingrosso Diego

Abstract

Homocysteine (Hcy) is a non-protein, sulfur-containing amino acid, which is recognized as a possible risk factor for coronary artery and other pathologies when its levels in the blood exceed the normal range of between 5 and 12 μmol/L (hyperhomocysteinemia). At present, standard procedures in laboratory medicine, such as high-performance liquid chromatography (HPLC), are commonly employed for the quantitation of total Hcy (tHcy), i.e., the sum of the protein-bound (oxidized) and free (homocystine plus reduced Hcy) forms, in biological fluids (particularly, serum or plasma). Here, the response of Aerosol Jet-printed organic electrochemical transistors (OECTs), in the presence of either reduced (free) and oxidized Hcy-based solutions, was analyzed. Two different experimental protocols were followed to this end: the former consisting of gold (Au) electrodes’ biothiol-induced thiolation, while the latter simply used bare platinum (Pt) electrodes. Electrochemical impedance spectroscopy (EIS) analysis was performed both to validate the gold thiolation protocol and to gain insights into the reduced Hcy sensing mechanism by the Au-gated OECTs, which provided a final limit of detection (LoD) of 80 nM. For the OECT response based on Platinum gate electrodes, on the other hand, a LoD of 180 nM was found in the presence of albumin-bound Hcy, with this being the most abundant oxidized Hcy-form (i.e., the protein-bound form) in physiological fluids. Despite the lack of any biochemical functionalization supporting the response selectivity, the findings discussed in this work highlight the potential role of OECT in the development of low-cost point-of-care (POC) electronic platforms that are suitable for the evaluation, in humans, of Hcy levels within the physiological range and in cases of hyperhomocysteinemia.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3