Novel Translational and Phosphorylation Modification Regulation Mechanisms of Tomato (Solanum lycopersicum) Fruit Ripening Revealed by Integrative Proteomics and Phosphoproteomics

Author:

Xie QiaoliORCID,Tian Yanling,Hu Zongli,Zhang LinchengORCID,Tang Boyan,Wang Yunshu,Li Jing,Chen GuopingORCID

Abstract

The tomato is a research model for fruit-ripening, however, its fruit-ripening mechanism still needs more extensive and in-depth exploration. Here, using TMT and LC-MS, the proteome and phosphoproteome of AC++ (wild type) and rin (ripening-inhibitor) mutant fruits were studied to investigate the translation and post-translational regulation mechanisms of tomato fruit-ripening. A total of 6141 proteins and 4011 phosphorylation sites contained quantitative information. One-hundred proteins were identified in both omics’ profiles, which were mainly found in ethylene biosynthesis and signal transduction, photosynthesis regulation, carotenoid and flavonoid biosynthesis, chlorophyll degradation, ribosomal subunit expression changes, MAPK pathway, transcription factors and kinases. The affected protein levels were correlated with their corresponding gene transcript levels, such as NAC-NOR, MADS-RIN, IMA, TAGL1, MADS-MC and TDR4. Changes in the phosphorylation levels of NAC-NOR and IMA were involved in the regulation of tomato fruit-ripening. Although photosynthesis was inhibited, there were diverse primary and secondary metabolic pathways, such as glycolysis, fatty acid metabolism, vitamin metabolism and isoprenoid biosynthesis, regulated by phosphorylation. These data constitute a map of protein—protein phosphorylation in the regulation of tomato fruit-ripening, which lays the foundation for future in-depth study of the sophisticated molecular mechanisms of fruit-ripening and provide guidance for molecular breeding.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Chongqing of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3