Abstract
Background: Fluoroquinolones (FQs) are potent antimicrobials with multiple effects on host cells and tissues. Although FQs can attenuate cancer invasion and metastasis, the underlying molecular mechanisms remain unclear. Matrix metalloproteinase-9 (MMP-9) has functional roles in tumor angiogenesis, invasion, and metastasis, and is associated with cancer progression and poor prognosis, suggesting that inhibitors of MMP-9 activity and transcription are prime candidates for cancer therapy. Despite numerous preclinical data supporting the use of MMP-9 inhibitors as anticancer drugs, the few available examples are not therapeutically useful due to low specificity and off-target effects. We examined the effects of FQs on MMP-9 production in cancer cells following transforming growth factor beta (TGF-β) and phorbol 12-myristate 13-acetate (PMA) stimulation. Experimental approaches: Using confluent cultures of HepG2 and A549 cells, the effects of FQs (ciprofloxacin, levofloxacin, clinafloxacin, gatifloxacin, and enrofloxacin) on TGF-β and PMA-induced MMP-9 mRNA expression and production were studied in RNA extracts and culture supernatants, respectively. FQs specifically abrogated TGF-β and PMA-induced MMP-9 levels and activity in a concentration and time-dependent manner, without affecting other MMPs or proteins involved in epithelial-mesenchymal transition. Additionally, FQs inhibited TGF-β and PMA-induced cell migration via p38 and cyclic AMP signaling pathways. Conclusions and implications: Overall, we demonstrated that FQs inhibit cancer cell migration and invasion by downregulating MMP-9 expression and revealed the cellular mechanisms underlying their potential value in cancer treatment.
Funder
Ministry of Science and Technology
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献