The Interaction between a Liquid Combustion Front and a Fire Barrier Made of CO2 Hydrate

Author:

Gaidukova Olga1,Donskoy Igor2ORCID,Misyura Sergey3,Morozov Vladimir3,Volkov Roman1ORCID

Affiliation:

1. Heat Mass Transfer Laboratory, National Research Tomsk Polytechnic University, Tomsk 634050, Russia

2. Melentiev Energy Systems Institute SB RAS, 130 Lermontov Street, Irkutsk 664033, Russia

3. Kutateladze Institute of Thermophysics, Novosibirsk 630090, Russia

Abstract

This paper presents experimental research into the propagation of a liquid fuel combustion front interacting with a fire barrier made of CO2 hydrate and ice. The combustible liquids studied here were kerosene, gasoline, Diesel fuel, oil, petroleum, and alcohol. The experiments with gas hydrate involved fire barriers based on powder and tablets. Heat and mass transfer and phase transitions in the area between the fire barrier and the combustion front were found to play a fundamental role. The liquid fuel combustion fronts propagate at a velocity ranging from 0.1 m/s to 3 m/s under natural convection. Forced convection leads to 2- to 5-fold changes in the flame propagation velocities. According to our experiments, 2–4 cm is the minimum width of a CO2 hydrate fire barrier for stopping the flame combustion front. We also determined the contribution of the gas hydrate dissociation to fire suppression and identified the conditions of the combustion front stoppage. The dimensionless processing of experimental data made them scalable to industrial applications. Finally, the experimental findings were also used to develop physical and mathematical models predicting the necessary and sufficient amount of CO2 hydrate in a fire barrier to provide the effective deceleration and stoppage of a flame combustion front.

Funder

National Research Tomsk Polytechnic University

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3