An Overview of Deformation Path Shapes on Equal Channel Angular Pressing

Author:

Baysal ErhanORCID,Koçar OğuzORCID,Kocaman EnginORCID,Köklü UğurORCID

Abstract

In recent years, research on ultra-fine grain materials has gained attention. While attempts have been made to improve the properties of the material, it has also become increasingly important to decrease the costs. Studies on improving material properties have revealed new production methods or have required the revision of existing production methods. In this direction, severe plastic deformation methods have come to the fore as a good alternative, and by improving the methods with new variations, materials with grain sizes below 1 µm have been obtained. In addition, this method positively affects the mechanical properties of the material. In this study, the Equal Channel Angular Pressing (ECAP) method, one of the severe plastic deformation methods, which has attracted great attention among researchers, was examined and the development stages of the method were investigated according to recent studies. The effective parameters in the method were examined and the effects of these parameters on the grain structure and mechanical properties of the material were discussed. Channel shapes, which are open to innovation and increase the efficiency of the ECAP method, were kept in the foreground among the prominent parameters in the ECAP process, and the results of the design changes made with new variations were examined.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3