FEM Simulation of Surface Micro-Groove Structure Fins Produced by Cryogenic-Temperature Extrusion Machining

Author:

Yin Xiaolong1ORCID,Wang Zhilin1,Guo Runyu1,Wang Wan1,Yu Hechun1,Wang Hanbin1

Affiliation:

1. School of Mechatronics Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China

Abstract

In the process of metal cutting, a large amount of chips that are difficult to reuse will be produced, resulting in resource waste. As a novel metal forming process, cryogenic-temperature extrusion machining (CT-EM) can directly process chips into usable fins with a surface micro-groove structure, which has the advantage of high efficiency, energy saving and flexibility. In this study, the effects of four parameters (compression ratio λ, rake angle of the tool α, friction coefficient μ and the constraining tool corner radius R) on the effective stress, temperature and formability of micro-groove fins produced by CT-EM and room-temperature extrusion machining (RT-EM) are investigated. The results show that the maximum effective stress and formability of CT-EM are larger than that of RT-EM, which indicates that CT-EM has greater advantages in the preparation of micro-groove fins. At a λ of 0.7, the formability of CT-EM is the best. Reducing the λ and α, or increasing the μ, can improve the forming effect of the fins. CT-EM can produce micro-groove fins with the best formability when λ = 0.7, α = 5°, μ = 0.75 and R = 0.1 mm.

Funder

National Natural Science Foundation of China

the Scientific and Technical key project in Henan Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3