Abstract
In this study, the effect of phase, microstructure, and porosity in Selective Laser Melting (SLM) on hardness, tensile, and fracture behavior of 17-4 PH was investigated. The increasing interest in SLM in producing complex parts has encouraged the industry to produce performance parts, such as martensitic 17-4 PH stainless steel. However, the microstructure and mechanical behavior of SLM 17-4PH is not fully understood by researchers. Understanding the microstructure profile is complex because it is driven by thermal history and porosity. Both elements vary, based on the build directions, further hindering researchers from fully understanding the mechanical properties. To fabricate specimens in three different building orientations (0°, 45°, and 90°), 17-4 powder was used. Two phases, namely, austenite and martensite, with 90° build direction, retained more austenite, due to the reheating process on a smaller base area. The optical microstructure revealed several elements that were distinct for SLM processing, including circular, columnar lath, wave melt pool, and porosity. Columnar lath was found to grow continuously across different melt pools. Hardness was found to be higher for 0° than for 90°, due to higher martensite content. Tensile strength was highest for 0°, at 958 MPa, higher than at 45° and 90° at 743 and 614 MPa, respectively. Porosity analysis validated that 90° had all three types of porosities and, specifically, the crescent type, which held un-melted powders. All types of porosities were found in fractography analysis.
Funder
National University of Malaysia
Subject
General Materials Science,Metals and Alloys
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献