Assessing the Influence of Operational Variables on Process Performance in Metallurgical Plants by Use of Shapley Value Regression

Author:

Liu XiuORCID,Aldrich ChrisORCID

Abstract

Shapley value regression with machine learning models has recently emerged as an axiomatic approach to the development of diagnostic models. However, when large numbers of predictor variables have to be considered, these methods become infeasible, owing to the inhibitive computational cost. In this paper, an approximate Shapley value approach with random forests is compared with a full Shapley model, as well as other methods used in variable importance analysis. Three case studies are considered, namely one based on simulated data, a model predicting throughput in a calcium carbide furnace as a function of operating variables, and a case study related to energy consumption in a steel plant. The approximately Shapley approach achieved results very similar to those achieved with the full Shapley approach but at a fraction of the computational cost. Moreover, although the variable importance measures considered in this study consistently identified the most influential predictors in the case studies, they yielded different results when fewer influential predictors were considered, and none of the variable importance measures performed better than the other measures across all three case studies.

Funder

ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3