Modeling the Chemical Composition of Ferritic Stainless Steels with the Use of Artificial Neural Networks

Author:

Honysz RafałORCID

Abstract

The aim of this paper is an attempt to answer the question of whether, on the basis of the values of the mechanical properties of ferritic stainless steels, it is possible to predict the chemical concentration of carbon and nine of the other most common alloying elements in these steels. The author believes that the relationships between the properties are more complicated and depend on a greater number of factors, such as heat and mechanical treatment conditions, but in this paper, they were not taken into account due to the uniform treatment of the tested steels. The modeling results proved to be very promising and indicate that for some elements, this is possible with high accuracy. Artificial neural networks with radial basis functions (RBF), multilayer perceptron with one and two hidden layers (MLP) and generalized regression neural networks (GRNN) were used for modeling. In order to minimize the manufacturing cost of products, developed artificial neural networks can be used in industry. They may also simplify the selection of materials if the engineer has to correctly select chemical components and appropriate plastic and/or heat treatments of stainless steel with the necessary mechanical properties.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference42 articles.

1. Fundamentals of Materials Science and Metallurgy;Dobrzański,2002

2. Metal Engineering Materials;Dobrzański,2004

3. Virtual examinations of alloying elements influence on alloy structural steels mechanical properties;Dobrzański;J. Mach. Eng.,2011

4. Application Of Artificial Neural Networks In Modeling Of Manufactured Front Metallization Contact Resistance For Silicon Solar Cells

5. Computer modelling system of the chemical composition and treatment parameters influence on mechanical properties of structural steels;Dobrzański;J. Achiev. Mater Manuf. Eng.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3