A Conceptual Interpretation of the Drought Code of the Canadian Forest Fire Weather Index System

Author:

Miller Eric A.ORCID

Abstract

The Drought Code (DC) was developed as part of the Canadian Forest Fire Weather Index System in the early 1970s to represent a deep column of soil that dries relatively slowly. Unlike most other fire danger indices or codes that operate on gravimetric moisture content and use the logarithmic drying equation to represent diffusion, the DC is based on a model that balances daily precipitation and evaporation. This conceptually simple water balance model was ultimately implemented using a “shortcut” equation that facilitated ledgering by hand but also mixed the water balance model with the abstraction equation, obscuring the logic of the model and concealing two important variables. An alternative interpretation of the DC is presented that returns the algorithm to an equivalent but conceptual form that offers several advantages: The simplicity of the underlying water balance model is retained with fewer variables, constants, and equations. Two key variables, daily depth of water storage and actual evaporation, are exposed. The English system of units is eliminated and two terms associated with precipitation are no longer needed. The reduced model does not include or depend on any soil attributes, confirming that the nature of the “DC equivalent soil” cannot be precisely known. While the “Conceptual Algorithm” presented here makes it easier to interpret and understand the logic of the DC, users may continue to use the equivalent “Implemented Algorithm” operationally if they wish.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3