Abstract
Abstract
Background
Climate change is expected to increase fire activity across the circumboreal zone, including central Siberia. However, few studies have quantitatively assessed potential changes in fire regime characteristics, or considered possible spatial variation in the magnitude of change. Moreover, while simulations indicate that changes in climate are likely to drive major shifts in Siberian vegetation, knowledge of future forest dynamics under the joint influence of changes in climate and fire regimes remains largely theoretical. We used the forest landscape model, LANDIS-II, with PnET-Succession and the BFOLDS fire extension to simulate changes in vegetation and fire regime characteristics under four alternative climate scenarios in three 10,000-km2 study landscapes distributed across a large latitudinal gradient in lowland central Siberia. We evaluated vegetation change using the fire life history strategies adopted by forest tree species: fire resisters, fire avoiders, and fire endurers.
Results
Annual burned area, the number of fires per year, fire size, and fire intensity all increased under climate change. The relative increase in fire activity was greatest in the northernmost study landscape, leading to a reduction in the difference in fire rotation period between study landscapes. Although the number of fires per year increased progressively with the magnitude of climate change, mean fire size peaked under mild or moderate climate warming in each of our study landscapes, suggesting that fuel limitations and past fire perimeters will feed back to reduce individual fire extent under extreme warming, relative to less extreme warming scenarios. In the Southern and Mid-taiga landscapes, we observed a major shift from fire resister-dominated forests to forests dominated by broadleaved deciduous fire endurers (Betula and Populus genera) under moderate and extreme climate warming scenarios, likely associated with the substantial increase in fire activity. These changes were accompanied by a major decrease in average cohort age and total vegetation biomass across the simulation landscapes.
Conclusions
Our results imply that climate change will greatly increase fire activity and reduce spatial heterogeneity in fire regime characteristics across central Siberia. Potential ecological consequences include a widespread shift toward forests dominated by broadleaved deciduous species that employ a fire endurer strategy to persist in an increasingly fire-prone environment.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry
Reference145 articles.
1. Aber, J.D., and C.A. Federer. 1992. A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92 (4): 463–474.
2. Aber, J.D., J.M. Melillo, C.A. McClaugherty, and K.N. Eshleman. 1983. Potential sinks for mineralized nitrogen following disturbance in forest ecosystems. Environmental Biogeochemistry 35: 179–192.
3. Agee, J. 1993. Fire ecology of Pacific Northwest forests. Washington, D.C.: Island Press.
4. Alexander, M.E., B.J. Stocks, and B.D. Lawson. 1991. Fire behavior in black spruce-lichen woodland: the Porter Lake project. In
Forestry Canada Northern Forestry Centre Information Report NOR-X-310.
5. Andela, N., D.C. Morton, L. Giglio, R. Paugam, Y. Chen, S. Hantson, G.R. van der Werf, and J.T. Anderson. 2019. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth System Science Data 11 (2): 529–552. https://doi.org/10.5194/ESSD-11-529-2019.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献