Modeling Air Pollution Using Partially Varying Coefficient Models with Heavy Tails

Author:

Jeldes Nicole,Ibacache-Pulgar GermánORCID,Marchant CarolinaORCID,López-Gonzales Javier LinkolkORCID

Abstract

The increase in air pollution levels in recent decades around the world has caused a negative impact on human health. A recent investigation by the World Health Organization indicates that nine out of ten people on the planet breathe air containing high levels of pollutants and seven million people die each year from this cause. This problem is present in several cities in South America due to dangerous levels of particulate matter present in the air, particularly in the winter period, making it a public health problem. Santiago in Chile and Lima in Peru are among the ten cities with the highest levels of air pollution in South America. The location, climate, and anthropogenic conditions of these cities generate critical episodes of air pollution, especially in the coldest months. In this context, we developed a semiparametric model to predict particulate matter levels as a function of meteorological variables. For this, we discuss estimation and diagnostic procedures using a Student’s t-based partially varying coefficient model. Parameter estimation is performed through the penalized maximum likelihood method using smoothing splines. To obtain the parameter estimates, we present a weighted back-fitting algorithm implemented in R-project and Matlab software. In addition, we developed local influence techniques that allowed us to evaluate the potential influence of certain observations in the model using four different perturbation schemes. Finally, we applied the developed model to real data on air pollution and meteorological variables in Santiago and Lima.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3