Economic Activity Forecasting Based on the Sentiment Analysis of News

Author:

Lukauskas MantasORCID,Pilinkienė VaidaORCID,Bruneckienė JurgitaORCID,Stundžienė AlinaORCID,Grybauskas Andrius,Ruzgas TomasORCID

Abstract

The outbreak of war and the earlier and ongoing COVID-19 pandemic determined the need for real-time monitoring of economic activity. The economic activity of a country can be defined in different ways. Most often, the country’s economic activity is characterized by various indicators such as the gross domestic product, the level of employment or unemployment of the population, the price level in the country, inflation, and other frequently used economic indicators. The most popular were the gross domestic product (GDP) and industrial production. However, such traditional tools have started to decline in modern times (as the timely knowledge of information becomes a critical factor in decision making in a rapidly changing environment) as they are published with significant delays. This work aims to use the information in the Lithuanian mass media and machine learning methods to assess whether these data can be used to assess economic activity. The aim of using these data is to determine the correlation between the usual indicators of economic activity assessment and media sentiments and to forecast traditional indicators. When evaluating consumer confidence, it is observed that the forecasting of this economic activity indicator is better based on the general index of negative sentiment (comparisons with univariate time series). In this case, the average absolute percentage error is 1.3% lower. However, if all sentiments are included in the forecasting instead of the best one, the forecasting is worse and in this case the MAPE is 5.9% higher. It is noticeable that forecasting the monthly and annual inflation rate is thus best when the overall negative sentiment is used. The MAPE of the monthly inflation rate is as much as8.5% lower, while the MAPE of the annual inflation rate is 1.5% lower.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3