Improvement of an Adaptive Robot Control by Particle Swarm Optimization-Based Model Identification

Author:

Issa HazemORCID,Tar József K.ORCID

Abstract

Model-based controllers suffer from the effects of modeling imprecisions. The analytical form of the available model often contains only approximate parameters and can be physically incomplete. The consequences of these effects can be compensated by adaptive techniques and by the improvement of the available model. Lyapunov function-based classic methods, which assume exact analytical model forms, guarantee asymptotic stability by cautious and slow parameter tuning. Fixed point iteration-based adaptive controllers can work without the exact model form but immediately yield precise trajectory tracking. They neither identify nor improve the parameters of the available model. However, any amendment of the model can improve the controller’s operation by affecting its range and speed of convergence. It is shown that even very primitive, fast, and simple versions of evolutionary computation-based methods can produce considerable improvement in their operation. Particle swarm optimization (PSO) is an attractive, efficient, and simple tool for model improvement. In this paper, a PSO-based model approximation technique was investigated for use in the control of a three degrees of freedom PUMA-type robot arm via numerical simulations. A fixed point iteration (FPI)-based adaptive controller was used for tracking a nominal trajectory while the PSO attempted to refine the model. It was found that the refined model still had few errors, the effects of which could not be completely neglected in the model-based control. The best practical solution seems to be the application of the same adaptive control with the use of the more precise, PSO-improved model. Apart from a preliminary study, the first attempt to combine PSO with FPI is presented here.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3