Abstract
Model-based controllers suffer from the effects of modeling imprecisions. The analytical form of the available model often contains only approximate parameters and can be physically incomplete. The consequences of these effects can be compensated by adaptive techniques and by the improvement of the available model. Lyapunov function-based classic methods, which assume exact analytical model forms, guarantee asymptotic stability by cautious and slow parameter tuning. Fixed point iteration-based adaptive controllers can work without the exact model form but immediately yield precise trajectory tracking. They neither identify nor improve the parameters of the available model. However, any amendment of the model can improve the controller’s operation by affecting its range and speed of convergence. It is shown that even very primitive, fast, and simple versions of evolutionary computation-based methods can produce considerable improvement in their operation. Particle swarm optimization (PSO) is an attractive, efficient, and simple tool for model improvement. In this paper, a PSO-based model approximation technique was investigated for use in the control of a three degrees of freedom PUMA-type robot arm via numerical simulations. A fixed point iteration (FPI)-based adaptive controller was used for tracking a nominal trajectory while the PSO attempted to refine the model. It was found that the refined model still had few errors, the effects of which could not be completely neglected in the model-based control. The best practical solution seems to be the application of the same adaptive control with the use of the more precise, PSO-improved model. Apart from a preliminary study, the first attempt to combine PSO with FPI is presented here.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献