Fractional order inspired iterative adaptive control

Author:

Varga BenceORCID,Tar József K.ORCID,Horváth RichárdORCID

Abstract

AbstractAlthough several studies have revealed that fractional order controllers usually outperform conventional integer-order control solutions, fractional order controllers are not yet widely applied in industrial applications due to their complex mathematical background. In this paper, further improvements of a simple weighted sum feedback design are introduced that imitates the behavior of a fractional order controller but is free from its various formal restrictions. The proposed control solution has the main characteristics of a fractional order controller, such as finite memory length, excellent transient response with no overshoot and robust behavior, but it is placed into a much simpler mathematical framework. In the current paper, a simple derivative term was incorporated in the design which made the controller’s output more stable by completely eliminating output chattering. The proposed control method was developed for a general second-order system. It was tested in a fixed point iteration-based adaptive control scenario, through simulations using a robotic example and on experimental basis as well, utilizing a simple one-degree-of-freedom electromechanical system. The presented experiments are the first systematic investigations of the fixed point iteration-based adaptive control method.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Reference77 articles.

1. The chronicles of fractional calculus;Machado;Fract. Calc. Appl. Anal.,2017

2. Online energy management strategy of fuel cell hybrid electric vehicles: A fractional-order extremum seeking method;Zhou;IEEE Trans. Ind. Electron.,2018

3. Nicholas Minorsky and the automatic steering of ships;Bennett;IEEE Control Syst. Mag.,1984

4. Application of fractional derivative models in linear viscoelastic problems,;Sasso;Mech. Time-DEPEND Mater.

5. Robust fixed point transformations in adaptive control using local basin of attraction;Tar;Acta Polytech. Hung.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3