Effect of Grain Size on the Tribological Behavior of CoCrFeMnNi High Entropy Alloy

Author:

Wang Ying1,Li Dong1,Yang Junsheng1,Jin Junsong2,Zhang Mao2ORCID,Wang Xinyun2,Li Bin1,Hu Zhigang1,Gong Pan2ORCID

Affiliation:

1. School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430000, China

2. State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China

Abstract

The effect and mechanism of grain sizes on the tribological behavior of CoCrFeMnNi high entropy alloy (HEA) were studied by friction experiments and wear morphology analysis. Under normal low load and low sliding speed, the primary wear mechanism of the HEA samples is adhesive wear. With the increase in sliding speed, the wear mechanisms of the samples are adhesive wear and oxidation wear. The oxide layer formed under the action of friction heat of the coarse grain (CG) sample is easy to break due to the softening of the CG. With the increase of normal load and sliding speed, the wear mechanisms of the HEA samples are mainly adhesive wear, oxidation wear, and plastic deformation. The oxide layer of CG sample has many cracks, and the worn surface also has plastic deformation, which leads to the increase of friction coefficient and specific wear rate and the decrease of wear resistance. Therefore, the fine grain size HEA sample has better wear resistance than the CG sample due to its high surface strength.

Funder

Natural Science Foundation of China

Hubei Chen Xiaoping Science and Technology Development Foundation

Hubei Natural Science Foundation youth project

Pilot research base of intelligent equipment for processing agricultural products

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3