Effects of Selective Laser Melting Process Parameters on Structural, Mechanical, Tribological and Corrosion Properties of CoCrFeMnNi High Entropy Alloy

Author:

Bulut CanerORCID,Yıldız Fatih,Varol Temel,Kaya Gürkan,Ergüder Tevfik Oğuzhan

Abstract

AbstractThe structural, tribological, mechanical, corrosion, and other properties of materials produced by laser-based powder bed fusion additive manufacturing methods are significantly affected by production parameters and strategies. Therefore, understanding and controlling the effects of the parameters used in the manufacturing process on the material properties is extremely important for determining optimum production conditions and for saving time and materials. This study aimed to determine the optimal laser parameter values for CoCrFeMnNi high-entropy alloy powders using the selective laser melting (SLM) method. The layer thickness was kept constant during experimentation. 5 different laser powers and 10 varying laser scanning speeds were tested, with hatch spacing from 30 to 90%. After determining the optimal laser parameters for SLM, prismatic samples were fabricated in different build orientations (0°, 45°, and 90°), and subsequently, their structural, mechanical, tribological, and corrosion properties were compared. Melt pool morphology could not be obtained at 20—40 and 60W laser powers and at all laser scanning speeds used at these laser powers. At 100 W laser power, 600 mm/s laser scanning speed, and 70% hatch spacing parameters, an ultimate tensile stress of 550 MPa and elongation of 48% were obtained. Among the samples produced in different build orientations, the sample produced with a 0° build orientation exhibited the highest relative density (99.94%), the highest microhardness (201.2 HV0.1), the lowest friction coefficient (0.7025), and the lowest wear and corrosion rates (0.7875 mpy). Additionally, SLM parameters were evaluated to have a significant impact on the performance of all properties of the samples. Graphical Abstract

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Igdır University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3