Approaches for Joint Retrieval of Wind Speed and Significant Wave Height and Further Improvement for Tiangong-2 Interferometric Imaging Radar Altimeter

Author:

Li GuoORCID,Zhang YunhuaORCID,Dong XiaoORCID

Abstract

The interferometric imaging radar altimeter (InIRA) adopts a short baseline along with small incidence angles to acquire interferometric signals from the sea surface with high accuracy, thus the wide-swath sea surface height (SSH) and backscattering coefficient (σ0) can be obtained simultaneously. This work presents an approach to jointly retrieve the wind speed and significant wave height (SWH) for the Chinese Tiangong-2 interferometric imaging radar altimeter (TG2-InIRA). This approach utilizes a multilayer perceptron (MLP) joint retrieval model based on σ0 and SSH data. By comparing with the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data, the root mean square errors (RMSEs) of the retrieved wind speed and the SWH are 1.27 m/s and 0.36 m, respectively. Based on the retrieved SWH, two enhanced wind speed retrieval models are developed for high sea states and low sea states, respectively. The results show that the RMSE of the retrieved wind speed is 1.12 m/s when the SWHs < 4 m; the RMSE is 0.73 m/s when the SWHs ≥ 4 m. Similarly, two enhanced SWH retrieval models for relatively larger and relatively smaller wind speed regions are developed based on the retrieved wind speed with corresponding RMSEs of 0.19 m and 0.16 m, respectively. The comparison between the retrieved results and the buoy data shows that they are highly consistent. The results show that the additional information of SWH can be used to improve the accuracy of wind speed retrieval at small incidence angles, and also the additional information of wind speed can be used to improve the SWH retrieval. The stronger the correlation between wind speed and SWH, the greater the improvement of the retrieved results. The proposed method can achieve joint retrieval of wind speed and SWH accurately, which complements the existing wind speed and SWH retrieval methods for InIRA.

Funder

the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3