Investigating the Potential of Sentinel-2 MSI in Early Crop Identification in Northeast China

Author:

Wei Mengfan,Wang Hongyan,Zhang Yuan,Li Qiangzi,Du Xin,Shi Guanwei,Ren Yiting

Abstract

Early crop identification can provide timely and valuable information for agricultural planting management departments to make reasonable and correct decisions. At present, there is still a lack of systematic summary and analysis on how to obtain real-time samples in the early stage, what the optimal feature sets are, and what level of crop identification accuracy can be achieved at different stages. First, this study generated training samples with the help of historical crop maps in 2019 and remote sensing images in 2020. Then, a feature optimization method was used to obtain the optimal features in different stages. Finally, the differences of the four classifiers in identifying crops and the variation characteristics of crop identification accuracy at different stages were analyzed. These experiments were conducted at three sites in Heilongjiang Province to evaluate the reliability of the results. The results showed that the earliest identification time of corn can be obtained in early July (the seven leaves period) with an identification accuracy up to 86%. In the early stages, its accuracy was 40~79%, which was low, and could not reach the satisfied accuracy requirements. In the middle stages, a satisfactory recognition accuracy could be achieved, and its recognition accuracy was 79~100%. The late stage had a higher recognition accuracy, which was 90~100%. The accuracy of soybeans at each stage was similar to that of corn, and the earliest identification time of soybeans could also be obtained in early July (the blooming period) with an identification accuracy up to 87%. Its accuracy in the early growth stage was 35~71%; in the middle stage, it was 69~100%; and in the late stage, it was 92~100%. Unlike corn and soybeans, the earliest identification time of rice could be obtained at the end of April (the flooding period) with an identification accuracy up to 86%. In the early stage, its accuracy was 58~100%; in the middle stage, its accuracy was 93~100%; and in the late stage, its accuracy was 96~100%. In terms of crop identification accuracy in the whole growth stage, GBDT and RF performed better than other classifiers in our three study areas. This study systematically investigated the potential of early crop recognition in Northeast China, and the results are helpful for relevant applications and decision making of crop recognition in different crop growth stages.

Funder

National Key R&D Program of China

National Science Foundation of China

Key Program of High-resolution Earth Observation System

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference86 articles.

1. Synergy of Sentinel-1 and Sentinel-2 Imagery for Early Seasonal Agricultural Crop Mapping

2. In-Season Mapping of Irrigated Crops Using Landsat 8 and Sentinel-1 Time Series

3. Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA

4. Progress and perspectives on agricultural remote sensing research and applications in China;Chen;J. Remote Sens.,2016

5. Research status and prospect of feature variable selection for crop remote sensing classification;Jia;Resour. Sci.,2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3