Remote Sensing Estimation and Spatiotemporal Pattern Analysis of Terrestrial Net Ecosystem Productivity in China

Author:

Liang LiangORCID,Geng Di,Yan Juan,Qiu Siyi,Shi Yanyan,Wang Shuguo,Wang Lijuan,Zhang Lianpeng,Kang Jianrong

Abstract

Net ecosystem productivity (NEP) plays an important role in understanding ecosystem function and the global carbon cycle. In this paper, the key parameters of the Carnegie Ames Stanford Approach (CASA) model, maximum light use efficiency (εmax), was optimized by using vegetation classification data. Then, the NEP was estimated by coupling the optimized CASA model, geostatistical model of soil respiration (GSMSR) and the soil respiration–soil heterotrophic respiration (Rs-Rh) relationship model. The ground observations from ChinaFLUX were used to verify the NEP estimation accuracy. The results showed that the R2 of the optimized CASA model increased from 0.411 to 0.774, and RMSE decreased from 21.425 gC·m−2·month−1 to 12.045 gC·m−2·month−1, indicating that optimizing CASA model by vegetation classification data was an effective method to improve the estimation accuracy of NEP. On this basis, the spatial and temporal distribution of NEP in China was analyzed. The research indicated that the monthly variation of NEP in China was a single peak curve with summer as the peak, which generally presented the pattern of southern region > northern region > Qinghai–Tibet region > northwest region. Furthermore, from 2001 to 2016, most regions of China showed a non-significant level upward trend, but main cropland (e.g., North China Plain and Northeast Plain) and some grassland (e.g., Ngari in Qinghai–Tibet Plateau and Xilin Gol League in Inner Mongolia) showed a non-significant-level downward trend. The study can deepen the understanding of the distribution of carbon sources/sinks in China, and provide a reference for regional carbon cycle research.

Funder

National Natural Science Foundation of China

China Europe Dragon 5 Cooperation Programme

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3