Laccase Activity in Fungus Cryphonectria parasitica Is Affected by Growth Conditions and Fungal–Viral Genotypic Interactions

Author:

Nuskern Lucija,Tkalec Mirta,Srezović Bruno,Ježić MarinORCID,Gačar Martina,Ćurković-Perica Mirna

Abstract

Laccase activity reduction in the chestnut blight fungus Cryphonectria parasitica usually accompanies the hypovirulence caused by the infection of fungus with Cryphonectria hypovirus 1 (CHV1). However, the different methods utilized for assessing this phenomenon has produced varied and often conflicting results. Furthermore, the majority of experimental setups included only one prototypic system, further confounding the results. Considering the diversity of fungal isolates, viral strains, and variability of their effects on the phytopathogenic process observed in nature, our goal was to ascertain if laccase activity variability is affected by (1) different C. parasitica isolates infected with several CHV1 strains, and (2) growth conditions. We have demonstrated that some CHV1 strains, contrary to previous assumptions, increase the activity of C. parasitica laccases. The specific fungal isolates used in the experiments and culture conditions also affected the results. Furthermore, we showed that two commonly used laccase substrates, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 2,4-dimethoxyphenol, cannot be used interchangeably in C. parasitica laccase activity measurements. Our results illustrate the importance of conducting this type of study in experimental systems and culture conditions that resemble natural conditions as much as possible to be able to infer the most relevant conclusions applicable to natural populations.

Funder

Croatian Science Foundation

Swiss National Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3