Author:
Lin Tiancheng,Fan Wei,Xiao Canbo,Yao Zhongzhi,Zhang Zhujun,Zhao Ruolan,Pan Yiwen,Chen Ying
Abstract
China is now accelerating the development of an ecological engineering for carbon sequestration in coastal mariculture environments to cope with climate change. Artificial upwelling as the ecological engineering can mix surface water with bottom water and bring rich nutrients to the euphotic zone, enhance seaweed growth in the oligotrophic sea area, and then increase coastal carbon sequestration. However, one of the major obstacles of the artificial upwelling is the high energy consumption. This study focused on the development of energy management technology for air-lift artificial upwelling by optimizing air injection rate. The fundamental principle underlying this technology is that the mode and intensity of air injection are adjusted from the feedback of information on velocity variation in tidal currents, illumination, and temperature of the surface layer. A series of equations to control air injection was derived based on seaweed growth and solar power generation. Although this finding was originally developed for the air-lift artificial upwelling, it also can be used in other areas of engineering, such as water delivery, aeration, and oxygenation. The simulations show that using a variable air injection rate can lift more nitrogen nutrients of 28.2 mol than using a fixed air injection rate of 26.6 mol, mostly with the same energy cost. Using this control algorithm, the changed temperature and dissolved oxygen profiles prove the effective upwelling in the experiments and the average weights of kelp are 33.1 g in the experimental group and 10.1 g in the control group. The ecological engineering was successfully increasing crop yield for carbon sequestration in coastal mariculture environments.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献