Mechanical Assembly Sequence Determination Using Artificial Neural Networks Based on Selected DFA Rating Factors

Author:

Suszyński MarcinORCID,Peta KatarzynaORCID,Černohlávek VítORCID,Svoboda MartinORCID

Abstract

In this paper, an assembly sequence planning system, based on artificial neural networks, is developed. The problem of artificial neural network itself is largely related to symmetry at every stage of its creation. A new modeling scheme, known as artificial neural networks, takes into account selected DFA (Design for Assembly) rating factors, which allow the evaluation of assembly sequences, what are the input data to the network learning and then estimate the assembly time. The input to the assembly neural network procedure is the sequences for assembling the parts, extended by the assembly’s connection graph that represents the parts and relations between these parts. The operation of a neural network is to predict the assembly time based on the training dataset and indicate it as an output value. The network inputs are data based on selected DFA factors influencing the assembly time. The proposed neural network model outperforms the available assembly sequence planning model in predicting the optimum assembly time for the mechanical parts. In the neural networks, the BFGS (the Broyden–Fletcher–Goldfarb–Shanno algorithm), steepest descent and gradient scaling algorithms are used. The network efficiency was checked from a set of 20,000 test networks with randomly selected parameters: activation functions (linear, logistic, tanh, exponential and sine), the number of hidden neurons, percentage set of training and test dataset. The novelty of the article is therefore the use of parts of the DFA methodology and the neural network to estimate assembly time, under specific production conditions. This approach allows, according to the authors, to estimate which mechanical assembly sequence is the most advantageous, because the simulation results suggest that the neural predictor can be used as a predictor for an assembly sequence planning system.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3