Abstract
The hydrothermal stability of K-Ca-Si-O glass soot oxidation catalysts has been improved by substitution of Ce and Zr for Ca. This work demonstrates that glasses can be tailored to withstand the challenging diesel exhaust hydrothermal environment by considering the field strengths and partial molar free energies of the hydration reactions (ΔGi) of the cation species in the glass. The result is a glass that shows less formation of precipitates after 2 h hydrothermal exposure in air with 7% H2O at temperatures ranging from 300–700 °C. A K-Ca-Si-O glass with a soot T50 (the temperature when 50% of the soot is oxidized) of 394 °C was found to degrade to 468 °C after a 2 h, 700 °C hydrothermal exposure, whereas the improved K-Ce-Zr-Si-O glass only changed from 407 °C to 427 °C after the same treatment.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献