Most Recent Advances in Diesel Engine Catalytic Soot Abatement: Structured Catalysts and Alternative Approaches

Author:

Meloni EugenioORCID,Palma VincenzoORCID

Abstract

Diesel engine emissions are typically composed of several hundred chemical compounds, partly present in the gas phase and partly in solid phase as particles, the so-called particulate matter or soot. The morphology of the catalyst is an important characteristic of soot particles’ abatement, since a good contact between catalyst and soot is mandatory. For practical purposes, the active species should be supported as a film on the structured carrier, in order to allow simultaneous soot filtration and combustion. This review focuses on the most recent advances in the development of structured catalysts for diesel engine catalytic soot combustion, characterized by different active species and supports, as well as by different geometric configurations (monoliths, foams, ceramic papers, or wire mesh); the most important peculiar properties are highlighted and summarized. Moreover, a critical review of the most recent advances in modeling studies is also presented in this paper. In addition, some highlights on some of the most recent alternative approaches proposed for limiting the soot emissions from diesel engines have been given, delineating feasible alternatives to the classical strategies nowadays used.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3