A Multiscale Topographical Analysis Based on Morphological Information: The HEVC Multiscale Decomposition

Author:

Eseholi TarekORCID,Coudoux François-XavierORCID,Corlay Patrick,Sadli Rahmad,Bigerelle Maxence

Abstract

In this paper, we evaluate the effect of scale analysis as well as the filtering process on the performances of an original compressed-domain classifier in the field of material surface topographies classification. Each surface profile is multiscale analyzed by using a Gaussian Filter analyzing method to be decomposed into three multiscale filtered image types: Low-pass (LP), Band-pass (BP), and High-pass (HP) filtered versions, respectively. The complete set of filtered image data constitutes the collected database. First, the images are lossless compressed using the state-of-the art High-efficiency video coding (HEVC) video coding standard. Then, the Intra-Prediction Modes Histogram (IPHM) feature descriptor is computed directly in the compressed domain from each HEVC compressed image. Finally, we apply the IPHM feature descriptors as an input of a Support Vector Machine (SVM) classifier. SVM is introduced here to strengthen the performances of the proposed classification system thanks to the powerful properties of machine learning tools. We evaluate the proposed solution we called “HEVC Multiscale Decomposition” (HEVC-MD) on a huge database of nearly 42,000 multiscale topographic images. A simple preliminary version of the algorithm reaches an accuracy of 52%. We increase this accuracy to 70% by using the multiscale analysis of the high-frequency range HP filtered image data sets. Finally, we verify that considering only the highest-scale analysis of low-frequency range LP was more appropriate for classifying our six surface topographies with an accuracy of up to 81%. To compare these new topographical descriptors to those conventionally used, SVM is applied on a set of 34 roughness parameters defined on the International Standard GPS ISO 25178 (Geometrical Product Specification), and one obtains accuracies of 38%, 52%, 65%, and 57% respectively for Sa, multiscale Sa, 34 roughness parameters, and multiscale ones. Compared to conventional roughness descriptors, the HEVC-MD descriptors increase surfaces discrimination from 65% to 81%.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3