Midwave FTIR-Based Remote Surface Temperature Estimation Using a Deep Convolutional Neural Network in a Dynamic Weather Environment

Author:

Kim SunghoORCID,Kim Jungho,Lee Jinyong,Ahn Junmo

Abstract

Remote measurements of thermal radiation are very important for analyzing the solar effect in various environments. This paper presents a novel real-time remote temperature estimation method by applying a deep learning-based regression method to midwave infrared hyperspectral images. A conventional remote temperature estimation using only one channel or multiple channels cannot provide a reliable temperature in dynamic weather environments because of the unknown atmospheric transmissivities. This paper solves the issue (real-time remote temperature measurement with high accuracy) with the proposed surface temperature-deep convolutional neural network (ST-DCNN) and a hyperspectral thermal camera (TELOPS HYPER-CAM MWE). The 27-layer ST-DCNN regressor can learn and predict the underlying temperatures from 75 spectral channels. Midwave infrared hyperspectral image data of a remote object were acquired three times a day (10:00, 13:00, 15:00) for 7 months to consider the dynamic weather variations. The experimental results validate the feasibility of the novel remote temperature estimation method in real-world dynamic environments. In addition, the thermal stealth properties of two types of paint were demonstrated by the proposed ST-DCNN as a real-world application.

Funder

Yeungnam University

Agency for Defense Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3