Solar Irradiance and Effective Brightness Temperature for SWIR Channels of AVHRR/NOAA and GOES Imagers

Author:

Trishchenko Alexander P.1

Affiliation:

1. Canada Centre for Remote Sensing, Earth Sciences Sector, Natural Resources Canada, Ottawa, Ontario, Canada

Abstract

Abstract Satellite observations in the shortwave infrared (SWIR) part of spectrum between 3.5 and 4.0 μm deliver critically important information for many applications. The satellite signal in this spectral band consists of solar-reflected radiation and thermal radiation emitted by surface, clouds, and atmosphere. Accurate retrievals require precise knowledge of solar irradiance values within a channel's bandwidth. The magnitudes of solar irradiance for shortwave infrared channels (3.7–3.9 μm) for the Advanced Very High Resolution Radiometer (AVHRR) on board the National Oceanic and Atmospheric Administration-7 (NOAA-7) to NOAA-18 satellites and the Geostationary Operational Environmental Satellite-8 (GOES-8) to GOES-12 are considered in this paper. Four recent solar reference spectra [those of Kurucz, Gueymard, the American Society for Testing and Materials (ASTM), and Wehrli] are analyzed to determine uncertainties in the knowledge of solar irradiance values for SWIR channels of the listed sensors. Because thermal radiation is frequently converted to effective blackbody temperature for analysis, computations, and calibration purposes, it is proposed here to express band-limited solar irradiance values in terms of brightness temperature as well. It is shown that band-limited solar irradiance for AVHRR radiometers expressed in terms of blackbody equivalent brightness temperature correspond to the range 355–360 K, and vary around 345 K for the SWIR channels of the GOES imagers. The values of band-limited solar irradiance and brightness temperatures are provided for various reference solar spectra. The relative differences in band-limited solar irradiance computed for the considered reference solar spectra are between 0% and 2.5%. Differences expressed in terms of brightness temperatures may reach 0.8 K. The results for the ASTM and the Kurucz reference spectra agree within 0.1% relative difference. Parameters of linear fits relating effective brightness temperatures and spectral radiance equivalent temperatures are also determined for all sensors. They are required for precise radiance–temperature and temperature–radiance conversion through Planck's functions in the case of the finite spectral response of real sensors.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference22 articles.

1. Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables.;ASTM,2000

2. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS.;Berk;Remote Sens. Environ,1998

3. Systematic corrections of the AVHRR image composites for temporal studies.;Cihlar;Remote Sens. Environ,2004

4. The Advanced Very High Resolution Radiometer (AVHRR).;Cracknell,1997

5. Solar irradiance variability.;Fröhlich,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3