Abstract
Most undergraduate students who have followed a thermodynamics course would have been asked to evaluate the volume occupied by one mole of air under standard conditions of pressure and temperature. However, what is this task exactly referring to? If air is to be regarded as a mixture, under what circumstances can this mixture be considered as comprising only one component called “air” in classical statistical mechanics? Furthermore, following the paradigmatic Gibbs’ mixing thought experiment, if one mixes air from a container with air from another container, all other things being equal, should there be a change in entropy? The present paper addresses these questions by developing a prior-based statistical mechanics framework to characterise binary mixtures’ composition realisations and their effect on thermodynamic free energies and entropies. It is found that (a) there exist circumstances for which an ideal binary mixture is thermodynamically equivalent to a single component ideal gas and (b) even when mixing two substances identical in their underlying composition, entropy increase does occur for finite size systems. The nature of the contributions to this increase is then discussed.
Subject
General Physics and Astronomy
Reference38 articles.
1. The Gibbs Paradox: Early History and Solutions
2. On the Equilibrium of Heterogenous Substances;Gibbs;Conn. Acad. Sci.,1876
3. Elementary Principles in Statistical Mechanics;Gibbs,1981
4. Statistical Mechanics a Survival Guide;Glazer,2001
5. Equilibrium and Nonequilibrium Statistical Mechanics;Balescu,1975
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献