The “Real” Gibbs Paradox and a Composition-Based Resolution

Author:

Paillusson Fabien1ORCID

Affiliation:

1. School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK

Abstract

There is no documented evidence to suggest that J. W. Gibbs did not recognize the indistinguishable nature of states involving the permutation of identical particles or that he did not know how to justify on a priori grounds that the mixing entropy of two identical substances must be zero. However, there is documented evidence to suggest that Gibbs was puzzled by one of his theoretical findings, namely that the entropy change per particle would amount to kBln2 when equal amounts of any two different substances are mixed, no matter how similar these substances may be, and would drop straight to zero as soon as they become exactly identical. The present paper is concerned with this latter version of the Gibbs paradox and, to this end, develops a theory characterising real finite-size mixtures as realisations sampled from a probability distribution over a measurable attribute of the constituents of the substances. In this view, two substances are identical, relative to this measurable attribute, if they have the same underlying probability distribution. This implies that two identical mixtures do not need to have identical finite-size realisations of their compositions. By averaging over composition realisations, it is found that (1) fixed composition mixtures behave as homogeneous single-component substances and (2) in the limit of a large system size, the entropy of mixing per particle shows a continuous variation from kBln2 to 0, as two different substances are made more similar, thereby resolving the “real” Gibbs paradox.

Funder

Leverhulme Trust

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference23 articles.

1. Gibbs, J.W. (1981). Elementary Principles in Statistical Mechanics, Ox Bow Press.

2. Smith, C., Erickson, G., and Neudorfer, P. (1992). Proceedings of the Maximum Entropy and Bayesian Methods, Kluwer Academic.

3. Hastings, C.S. (1909). Proceedings of the Bibliographical Memoirs, Part of Volume VI, National Academy of Sciences.

4. Gibbs’ paradox according to Gibbs and slightly beyond;Paillusson;Mol. Phys.,2018

5. Gibbs, J.W. (1876). On the Equilibrium of Heterogenous Substances, Connecticut Academy of Arts and Sciences.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3