Simulating Slosh Induced Damping, with Application to Aircraft Wing-like Structures

Author:

Liu WendiORCID,Mahfoze Omar Ahmed,Longshaw Stephen M.ORCID,Skillen AlexORCID,Emerson David R.ORCID

Abstract

The added damping generated by liquid sloshing in a tank has been utilized in a number of civil applications, including aviation, to reduce the vibration of the system. As part of a wider EU H2020 project called SLOWD (Sloshing Wing Dynamics), the presented study performed numerical simulations on the slosh-induced damping of liquid in tanks that were under free decay oscillations and embedded in an aircraft wing-like structure. A new open-source partitioned fluid–structure interaction software framework is presented and employed for the numerical simulations. Periodic sloshing waves and violent vertical fluid motions are observed in the study. These demonstrate the effects of slosh-induced damping under different excitation amplitudes of the structure and a varying number of baffled regions within the tank. Various sloshing patterns caused by different combinations of the excitation amplitude and compartment numbers lead to different induced dampings of the free decay motion. We observed a distinctly non-monotonic function on the slosh damping when the initial excitation amplitude is small (i.e., 0.25), with a 59% reduction when we increase the number of baffled compartments from one to four, and a 153% increase when moving from one to eight compartments. This is due to the change in the sloshing wave frequency, resulting in a significant change in the impact of the fluid between the tank ceiling and the wave crests. When the initial excitation amplitude is large (i.e., 1.0), there is no significant change in the slosh-induced damping when changing the number of compartments in the tank, for the range of parameters considered, due to the highly turbulent fluid motion. This work is expected to form the basis of further, more detailed studies within the context of the SLOWD project and its ever-expanding experimental data output.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3