Segmentation of Liver Tumor in CT Scan Using ResU-Net

Author:

Sabir Muhammad Waheed,Khan ZiaORCID,Saad Naufal M.ORCID,Khan Danish M.,Al-Khasawneh Mahmoud Ahmad,Perveen KiranORCID,Qayyum AbdulORCID,Azhar Ali Syed SaadORCID

Abstract

Segmentation of images is a common task within medical image analysis and a necessary component of medical image segmentation. The segmentation of the liver and liver tumors is an important but challenging stage in screening and diagnosing liver diseases. Although many automated techniques have been developed for liver and tumor segmentation; however, segmentation of the liver is still challenging due to the fuzzy & complex background of the liver position with other organs. As a result, creating a considerable automated liver and tumour division from CT scans is critical for identifying liver cancer. In this article, deeply dense-network ResU-Net architecture is implemented on CT scan using the 3D-IRCADb01 dataset. An essential feature of ResU-Net is the residual block and U-Net architecture, which extract additional information from the input data compared to the traditional U-Net network. Before being fed to the deep neural network, image pre-processing techniques are applied, including data augmentation, Hounsfield windowing unit, and histogram equalization. The ResU-Net network performance is evaluated using the dice similarity coefficient (DSC) metric. The ResU-Net system with residual connections outperformed state-of-the-art approaches for liver tumour identification, with a DSC value of 0.97% for organ recognition and 0.83% for segmentation methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. Global cancer statistics, 2012

2. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

3. The liver tumor segmentation benchmark (lits);Bilic;arXiv,2019

4. Practical window setting optimization for medical image deep learning;Lee;arXiv,2018

5. A multistep liver segmentation strategy by combining level set based method with texture analysis for CT images;Li;Proceedings of the 2014 International Conference on Orange Technologies,2014

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3