Transformer Skip‐Fusion Based SwinUNet for Liver Segmentation From CT Images

Author:

Kumar S. S.1,Vinod Kumar R. S.2

Affiliation:

1. Department of EIE NICHE Kumarakoil India

2. Department of ECE NICHE Kumarakoil India

Abstract

ABSTRACTLiver segmentation is a crucial step in medical image analysis and is essential for diagnosing and treating liver diseases. However, manual segmentation is time‐consuming and subject to variability among observers. To address these challenges, a novel liver segmentation approach, SwinUNet with transformer skip‐fusion is proposed. This method harnesses the Swin Transformer's capacity to model long‐range dependencies efficiently, the U‐Net's ability to preserve fine spatial details, and the transformer skip‐fusion's effectiveness in enabling the decoder to learn intricate features from encoder feature maps. In experiments using the 3DIRCADb and CHAOS datasets, this technique outperformed traditional CNN‐based methods, achieving a mean DICE coefficient of 0.988% and a mean Jaccard coefficient of 0.973% by aggregating the results obtained from each dataset, signifying outstanding agreement with ground truth. This remarkable accuracy in liver segmentation holds significant promise for improving liver disease diagnosis and enhancing healthcare outcomes for patients with liver conditions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3