Zero-Shot Emotion Detection for Semi-Supervised Sentiment Analysis Using Sentence Transformers and Ensemble Learning

Author:

Tesfagergish Senait Gebremichael,Kapočiūtė-Dzikienė JurgitaORCID,Damaševičius RobertasORCID

Abstract

We live in a digitized era where our daily life depends on using online resources. Businesses consider the opinions of their customers, while people rely on the reviews/comments of other users before buying specific products or services. These reviews/comments are usually provided in the non-normative natural language within different contexts and domains (in social media, forums, news, blogs, etc.). Sentiment classification plays an important role in analyzing such texts collected from users by assigning positive, negative, and sometimes neutral sentiment values to each of them. Moreover, these texts typically contain many expressed or hidden emotions (such as happiness, sadness, etc.) that could contribute significantly to identifying sentiments. We address the emotion detection problem as part of the sentiment analysis task and propose a two-stage emotion detection methodology. The first stage is the unsupervised zero-shot learning model based on a sentence transformer returning the probabilities for subsets of 34 emotions (anger, sadness, disgust, fear, joy, happiness, admiration, affection, anguish, caution, confusion, desire, disappointment, attraction, envy, excitement, grief, hope, horror, joy, love, loneliness, pleasure, fear, generosity, rage, relief, satisfaction, sorrow, wonder, sympathy, shame, terror, and panic). The output of the zero-shot model is used as an input for the second stage, which trains the machine learning classifier on the sentiment labels in a supervised manner using ensemble learning. The proposed hybrid semi-supervised method achieves the highest accuracy of 87.3% on the English SemEval 2017 dataset.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3