Adaptive Thresholding of CNN Features for Maize Leaf Disease Classification and Severity Estimation

Author:

Mafukidze Harry DzingaiORCID,Owomugisha GodliverORCID,Otim Daniel,Nechibvute Action,Nyamhere Cloud,Mazunga Felix

Abstract

Convolutional neural networks (CNNs) are the gold standard in the machine learning (ML) community. As a result, most of the recent studies have relied on CNNs, which have achieved higher accuracies compared with traditional machine learning approaches. From prior research, we learned that multi-class image classification models can solve leaf disease identification problems, and multi-label image classification models can solve leaf disease quantification problems (severity analysis). Historically, maize leaf disease severity analysis or quantification has always relied on domain knowledge—that is, experts evaluate the images and train the CNN models based on their knowledge. Here, we propose a unique system that achieves the same objective while excluding input from specialists. This avoids bias and does not rely on a “human in the loop model” for disease quantification. The advantages of the proposed system are many. Notably, the conventional system of maize leaf disease quantification is labor intensive, time-consuming and prone to errors since it lacks standardized diagnosis guidelines. In this work, we present an approach to quantify maize leaf disease based on adaptive thresholding. The experimental work of our study is in three parts. First, we train a wide variety of well-known deep learning models for maize leaf disease classification, then we compare the performance of the deep learning models and finally extract the class activation heatmaps from the prediction layers of the CNN models. Second, we develop an adaptive thresholding technique that automatically extracts the regions of interest from the class activation maps without any prior knowledge. Lastly, we use these regions of interest to estimate image leaf disease severity. Experimental results show that transfer learning approaches can classify maize leaf diseases with up to 99% accuracy. With a high quantification accuracy, our proposed adaptive thresholding method for CNN class activation maps can be a valuable contribution to quantifying maize leaf diseases without relying on domain knowledge.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3