Application of a U-Net Neural Network to the Puccinia sorghi–Maize Pathosystem

Author:

Holan Katerina L.1ORCID,White Charles H.2ORCID,Whitham Steven A.1ORCID

Affiliation:

1. Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014

2. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523

Abstract

Computer vision approaches to analyze plant disease data can be both faster and more reliable than traditional, manual methods. However, the requirement of manually annotating training data for the majority of machine learning applications can present a challenge for pipeline development. Here, we describe a machine learning approach to quantify Puccinia sorghi incidence on maize leaves utilizing U-Net convolutional neural network models. We analyzed several U-Net models with increasing amounts of training image data, either randomly chosen from a large data pool or randomly chosen from a subset of disease time course data. As the training dataset size increases, the models perform better, but the rate of performance decreases. Additionally, the use of a diverse training dataset can improve model performance and reduce the amount of annotated training data required for satisfactory performance. Models with as few as 48 whole-leaf training images are able to replicate the ground truth results within our testing dataset. The final model utilizing our entire training dataset performs similarly to our ground truth data, with an intersection over union value of 0.5002 and an F1 score of 0.6669. This work illustrates the capacity of U-Nets to accurately answer real-world plant pathology questions related to quantification and estimation of plant disease symptoms. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

U.S. Department of Agriculture National Institute of Food and Agriculture-Agricultural and Food Research Initiative

National Science Foundation Division of Graduate Education

Iowa State University Plant Sciences Institute

Publisher

Scientific Societies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3