Radiation Damage of Polydimethylsiloxane and Polyimide by X-ray Free-Electron Laser

Author:

Lee KeondoORCID,Lee Donghyeon,Baek Sangwon,Kim Jihan,Park JaehyunORCID,Lee Sang Jae,Park Sehan,Kim JangwooORCID,Lee Jong-Lam,Chung Wan Kyun,Cho Yunje,Nam Ki HyunORCID

Abstract

A crystal delivery system is essential in serial femtosecond crystallography experiments using an X-ray free-electron laser (XFEL). Investigating the XFEL-induced radiation damage to materials potentially applicable to sample delivery devices is vital for developing a sample delivery system. In this study, we investigated the radiation damage caused by an XFEL to polydimethylsiloxane (PDMS) and polyimide (PI), which are widely used as sample delivery materials in synchrotron X-rays. Upon XFEL exposure, the PDMS film produced irregularly shaped and sized holes, whereas the PI film produced relatively regular shaped and sized holes. When XFELs were exposed to the channel of the PDMS-based microfluidic device, holes were generated on the film by the radiation damage and the microfluidic device and the internal channel region were structurally destroyed. The PI-based microfluidic device experienced no structural destruction, except for the holes generated by the XFEL. However, as the XFELs were continuously exposed, bubbles generated from the solution due to radiation damage; the accumulation of these bubbles interfered with the path of the inner channel of the microfluidic device. Our results will not only help understand the phenomenon of radiation damage of PDMS and PI films by XFEL, but also provide insight into the directions to pursue in developing applications of PDMS and PI films in XFEL studies.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3